3.1.56 \(\int \sec ^2(c+d x) (A+B \sec (c+d x)+C \sec ^2(c+d x)) \, dx\) [56]

3.1.56.1 Optimal result
3.1.56.2 Mathematica [A] (verified)
3.1.56.3 Rubi [A] (verified)
3.1.56.4 Maple [A] (verified)
3.1.56.5 Fricas [A] (verification not implemented)
3.1.56.6 Sympy [F]
3.1.56.7 Maxima [A] (verification not implemented)
3.1.56.8 Giac [B] (verification not implemented)
3.1.56.9 Mupad [B] (verification not implemented)

3.1.56.1 Optimal result

Integrand size = 29, antiderivative size = 78 \[ \int \sec ^2(c+d x) \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right ) \, dx=\frac {B \text {arctanh}(\sin (c+d x))}{2 d}+\frac {(3 A+2 C) \tan (c+d x)}{3 d}+\frac {B \sec (c+d x) \tan (c+d x)}{2 d}+\frac {C \sec ^2(c+d x) \tan (c+d x)}{3 d} \]

output
1/2*B*arctanh(sin(d*x+c))/d+1/3*(3*A+2*C)*tan(d*x+c)/d+1/2*B*sec(d*x+c)*ta 
n(d*x+c)/d+1/3*C*sec(d*x+c)^2*tan(d*x+c)/d
 
3.1.56.2 Mathematica [A] (verified)

Time = 0.16 (sec) , antiderivative size = 51, normalized size of antiderivative = 0.65 \[ \int \sec ^2(c+d x) \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right ) \, dx=\frac {3 B \text {arctanh}(\sin (c+d x))+\tan (c+d x) \left (6 (A+C)+3 B \sec (c+d x)+2 C \tan ^2(c+d x)\right )}{6 d} \]

input
Integrate[Sec[c + d*x]^2*(A + B*Sec[c + d*x] + C*Sec[c + d*x]^2),x]
 
output
(3*B*ArcTanh[Sin[c + d*x]] + Tan[c + d*x]*(6*(A + C) + 3*B*Sec[c + d*x] + 
2*C*Tan[c + d*x]^2))/(6*d)
 
3.1.56.3 Rubi [A] (verified)

Time = 0.54 (sec) , antiderivative size = 79, normalized size of antiderivative = 1.01, number of steps used = 11, number of rules used = 10, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.345, Rules used = {3042, 4535, 3042, 4255, 3042, 4257, 4534, 3042, 4254, 24}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \sec ^2(c+d x) \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right ) \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \csc \left (c+d x+\frac {\pi }{2}\right )^2 \left (A+B \csc \left (c+d x+\frac {\pi }{2}\right )+C \csc \left (c+d x+\frac {\pi }{2}\right )^2\right )dx\)

\(\Big \downarrow \) 4535

\(\displaystyle \int \sec ^2(c+d x) \left (C \sec ^2(c+d x)+A\right )dx+B \int \sec ^3(c+d x)dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \csc \left (c+d x+\frac {\pi }{2}\right )^2 \left (C \csc \left (c+d x+\frac {\pi }{2}\right )^2+A\right )dx+B \int \csc \left (c+d x+\frac {\pi }{2}\right )^3dx\)

\(\Big \downarrow \) 4255

\(\displaystyle \int \csc \left (c+d x+\frac {\pi }{2}\right )^2 \left (C \csc \left (c+d x+\frac {\pi }{2}\right )^2+A\right )dx+B \left (\frac {1}{2} \int \sec (c+d x)dx+\frac {\tan (c+d x) \sec (c+d x)}{2 d}\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \csc \left (c+d x+\frac {\pi }{2}\right )^2 \left (C \csc \left (c+d x+\frac {\pi }{2}\right )^2+A\right )dx+B \left (\frac {1}{2} \int \csc \left (c+d x+\frac {\pi }{2}\right )dx+\frac {\tan (c+d x) \sec (c+d x)}{2 d}\right )\)

\(\Big \downarrow \) 4257

\(\displaystyle \int \csc \left (c+d x+\frac {\pi }{2}\right )^2 \left (C \csc \left (c+d x+\frac {\pi }{2}\right )^2+A\right )dx+B \left (\frac {\text {arctanh}(\sin (c+d x))}{2 d}+\frac {\tan (c+d x) \sec (c+d x)}{2 d}\right )\)

\(\Big \downarrow \) 4534

\(\displaystyle \frac {1}{3} (3 A+2 C) \int \sec ^2(c+d x)dx+B \left (\frac {\text {arctanh}(\sin (c+d x))}{2 d}+\frac {\tan (c+d x) \sec (c+d x)}{2 d}\right )+\frac {C \tan (c+d x) \sec ^2(c+d x)}{3 d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{3} (3 A+2 C) \int \csc \left (c+d x+\frac {\pi }{2}\right )^2dx+B \left (\frac {\text {arctanh}(\sin (c+d x))}{2 d}+\frac {\tan (c+d x) \sec (c+d x)}{2 d}\right )+\frac {C \tan (c+d x) \sec ^2(c+d x)}{3 d}\)

\(\Big \downarrow \) 4254

\(\displaystyle -\frac {(3 A+2 C) \int 1d(-\tan (c+d x))}{3 d}+B \left (\frac {\text {arctanh}(\sin (c+d x))}{2 d}+\frac {\tan (c+d x) \sec (c+d x)}{2 d}\right )+\frac {C \tan (c+d x) \sec ^2(c+d x)}{3 d}\)

\(\Big \downarrow \) 24

\(\displaystyle \frac {(3 A+2 C) \tan (c+d x)}{3 d}+B \left (\frac {\text {arctanh}(\sin (c+d x))}{2 d}+\frac {\tan (c+d x) \sec (c+d x)}{2 d}\right )+\frac {C \tan (c+d x) \sec ^2(c+d x)}{3 d}\)

input
Int[Sec[c + d*x]^2*(A + B*Sec[c + d*x] + C*Sec[c + d*x]^2),x]
 
output
((3*A + 2*C)*Tan[c + d*x])/(3*d) + (C*Sec[c + d*x]^2*Tan[c + d*x])/(3*d) + 
 B*(ArcTanh[Sin[c + d*x]]/(2*d) + (Sec[c + d*x]*Tan[c + d*x])/(2*d))
 

3.1.56.3.1 Defintions of rubi rules used

rule 24
Int[a_, x_Symbol] :> Simp[a*x, x] /; FreeQ[a, x]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4254
Int[csc[(c_.) + (d_.)*(x_)]^(n_), x_Symbol] :> Simp[-d^(-1)   Subst[Int[Exp 
andIntegrand[(1 + x^2)^(n/2 - 1), x], x], x, Cot[c + d*x]], x] /; FreeQ[{c, 
 d}, x] && IGtQ[n/2, 0]
 

rule 4255
Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Simp[(-b)*Cos[c + d* 
x]*((b*Csc[c + d*x])^(n - 1)/(d*(n - 1))), x] + Simp[b^2*((n - 2)/(n - 1)) 
  Int[(b*Csc[c + d*x])^(n - 2), x], x] /; FreeQ[{b, c, d}, x] && GtQ[n, 1] 
&& IntegerQ[2*n]
 

rule 4257
Int[csc[(c_.) + (d_.)*(x_)], x_Symbol] :> Simp[-ArcTanh[Cos[c + d*x]]/d, x] 
 /; FreeQ[{c, d}, x]
 

rule 4534
Int[(csc[(e_.) + (f_.)*(x_)]*(b_.))^(m_.)*(csc[(e_.) + (f_.)*(x_)]^2*(C_.) 
+ (A_)), x_Symbol] :> Simp[(-C)*Cot[e + f*x]*((b*Csc[e + f*x])^m/(f*(m + 1) 
)), x] + Simp[(C*m + A*(m + 1))/(m + 1)   Int[(b*Csc[e + f*x])^m, x], x] /; 
 FreeQ[{b, e, f, A, C, m}, x] && NeQ[C*m + A*(m + 1), 0] &&  !LeQ[m, -1]
 

rule 4535
Int[(csc[(e_.) + (f_.)*(x_)]*(b_.))^(m_.)*((A_.) + csc[(e_.) + (f_.)*(x_)]* 
(B_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_.)), x_Symbol] :> Simp[B/b   Int[(b*Cs 
c[e + f*x])^(m + 1), x], x] + Int[(b*Csc[e + f*x])^m*(A + C*Csc[e + f*x]^2) 
, x] /; FreeQ[{b, e, f, A, B, C, m}, x]
 
3.1.56.4 Maple [A] (verified)

Time = 0.26 (sec) , antiderivative size = 68, normalized size of antiderivative = 0.87

method result size
derivativedivides \(\frac {A \tan \left (d x +c \right )+B \left (\frac {\sec \left (d x +c \right ) \tan \left (d x +c \right )}{2}+\frac {\ln \left (\sec \left (d x +c \right )+\tan \left (d x +c \right )\right )}{2}\right )-C \left (-\frac {2}{3}-\frac {\sec \left (d x +c \right )^{2}}{3}\right ) \tan \left (d x +c \right )}{d}\) \(68\)
default \(\frac {A \tan \left (d x +c \right )+B \left (\frac {\sec \left (d x +c \right ) \tan \left (d x +c \right )}{2}+\frac {\ln \left (\sec \left (d x +c \right )+\tan \left (d x +c \right )\right )}{2}\right )-C \left (-\frac {2}{3}-\frac {\sec \left (d x +c \right )^{2}}{3}\right ) \tan \left (d x +c \right )}{d}\) \(68\)
parts \(\frac {A \tan \left (d x +c \right )}{d}+\frac {B \left (\frac {\sec \left (d x +c \right ) \tan \left (d x +c \right )}{2}+\frac {\ln \left (\sec \left (d x +c \right )+\tan \left (d x +c \right )\right )}{2}\right )}{d}-\frac {C \left (-\frac {2}{3}-\frac {\sec \left (d x +c \right )^{2}}{3}\right ) \tan \left (d x +c \right )}{d}\) \(73\)
norman \(\frac {\frac {4 \left (3 A +C \right ) \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{3}}{3 d}-\frac {\left (2 A -B +2 C \right ) \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{5}}{d}-\frac {\left (2 A +B +2 C \right ) \tan \left (\frac {d x}{2}+\frac {c}{2}\right )}{d}}{\left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1\right )^{3}}-\frac {B \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )}{2 d}+\frac {B \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )}{2 d}\) \(124\)
risch \(-\frac {i \left (3 B \,{\mathrm e}^{5 i \left (d x +c \right )}-6 A \,{\mathrm e}^{4 i \left (d x +c \right )}-12 A \,{\mathrm e}^{2 i \left (d x +c \right )}-12 C \,{\mathrm e}^{2 i \left (d x +c \right )}-3 B \,{\mathrm e}^{i \left (d x +c \right )}-6 A -4 C \right )}{3 d \left ({\mathrm e}^{2 i \left (d x +c \right )}+1\right )^{3}}+\frac {B \ln \left ({\mathrm e}^{i \left (d x +c \right )}+i\right )}{2 d}-\frac {B \ln \left ({\mathrm e}^{i \left (d x +c \right )}-i\right )}{2 d}\) \(126\)
parallelrisch \(\frac {-9 \left (\frac {\cos \left (3 d x +3 c \right )}{3}+\cos \left (d x +c \right )\right ) B \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )+9 \left (\frac {\cos \left (3 d x +3 c \right )}{3}+\cos \left (d x +c \right )\right ) B \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )+\left (6 A +4 C \right ) \sin \left (3 d x +3 c \right )+6 B \sin \left (2 d x +2 c \right )+6 \sin \left (d x +c \right ) \left (A +2 C \right )}{6 d \left (\cos \left (3 d x +3 c \right )+3 \cos \left (d x +c \right )\right )}\) \(135\)

input
int(sec(d*x+c)^2*(A+B*sec(d*x+c)+C*sec(d*x+c)^2),x,method=_RETURNVERBOSE)
 
output
1/d*(A*tan(d*x+c)+B*(1/2*sec(d*x+c)*tan(d*x+c)+1/2*ln(sec(d*x+c)+tan(d*x+c 
)))-C*(-2/3-1/3*sec(d*x+c)^2)*tan(d*x+c))
 
3.1.56.5 Fricas [A] (verification not implemented)

Time = 0.26 (sec) , antiderivative size = 94, normalized size of antiderivative = 1.21 \[ \int \sec ^2(c+d x) \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right ) \, dx=\frac {3 \, B \cos \left (d x + c\right )^{3} \log \left (\sin \left (d x + c\right ) + 1\right ) - 3 \, B \cos \left (d x + c\right )^{3} \log \left (-\sin \left (d x + c\right ) + 1\right ) + 2 \, {\left (2 \, {\left (3 \, A + 2 \, C\right )} \cos \left (d x + c\right )^{2} + 3 \, B \cos \left (d x + c\right ) + 2 \, C\right )} \sin \left (d x + c\right )}{12 \, d \cos \left (d x + c\right )^{3}} \]

input
integrate(sec(d*x+c)^2*(A+B*sec(d*x+c)+C*sec(d*x+c)^2),x, algorithm="frica 
s")
 
output
1/12*(3*B*cos(d*x + c)^3*log(sin(d*x + c) + 1) - 3*B*cos(d*x + c)^3*log(-s 
in(d*x + c) + 1) + 2*(2*(3*A + 2*C)*cos(d*x + c)^2 + 3*B*cos(d*x + c) + 2* 
C)*sin(d*x + c))/(d*cos(d*x + c)^3)
 
3.1.56.6 Sympy [F]

\[ \int \sec ^2(c+d x) \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right ) \, dx=\int \left (A + B \sec {\left (c + d x \right )} + C \sec ^{2}{\left (c + d x \right )}\right ) \sec ^{2}{\left (c + d x \right )}\, dx \]

input
integrate(sec(d*x+c)**2*(A+B*sec(d*x+c)+C*sec(d*x+c)**2),x)
 
output
Integral((A + B*sec(c + d*x) + C*sec(c + d*x)**2)*sec(c + d*x)**2, x)
 
3.1.56.7 Maxima [A] (verification not implemented)

Time = 0.20 (sec) , antiderivative size = 79, normalized size of antiderivative = 1.01 \[ \int \sec ^2(c+d x) \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right ) \, dx=\frac {4 \, {\left (\tan \left (d x + c\right )^{3} + 3 \, \tan \left (d x + c\right )\right )} C - 3 \, B {\left (\frac {2 \, \sin \left (d x + c\right )}{\sin \left (d x + c\right )^{2} - 1} - \log \left (\sin \left (d x + c\right ) + 1\right ) + \log \left (\sin \left (d x + c\right ) - 1\right )\right )} + 12 \, A \tan \left (d x + c\right )}{12 \, d} \]

input
integrate(sec(d*x+c)^2*(A+B*sec(d*x+c)+C*sec(d*x+c)^2),x, algorithm="maxim 
a")
 
output
1/12*(4*(tan(d*x + c)^3 + 3*tan(d*x + c))*C - 3*B*(2*sin(d*x + c)/(sin(d*x 
 + c)^2 - 1) - log(sin(d*x + c) + 1) + log(sin(d*x + c) - 1)) + 12*A*tan(d 
*x + c))/d
 
3.1.56.8 Giac [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 162 vs. \(2 (70) = 140\).

Time = 0.30 (sec) , antiderivative size = 162, normalized size of antiderivative = 2.08 \[ \int \sec ^2(c+d x) \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right ) \, dx=\frac {3 \, B \log \left ({\left | \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + 1 \right |}\right ) - 3 \, B \log \left ({\left | \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - 1 \right |}\right ) - \frac {2 \, {\left (6 \, A \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{5} - 3 \, B \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{5} + 6 \, C \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{5} - 12 \, A \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} - 4 \, C \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} + 6 \, A \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + 3 \, B \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + 6 \, C \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right )}}{{\left (\tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} - 1\right )}^{3}}}{6 \, d} \]

input
integrate(sec(d*x+c)^2*(A+B*sec(d*x+c)+C*sec(d*x+c)^2),x, algorithm="giac" 
)
 
output
1/6*(3*B*log(abs(tan(1/2*d*x + 1/2*c) + 1)) - 3*B*log(abs(tan(1/2*d*x + 1/ 
2*c) - 1)) - 2*(6*A*tan(1/2*d*x + 1/2*c)^5 - 3*B*tan(1/2*d*x + 1/2*c)^5 + 
6*C*tan(1/2*d*x + 1/2*c)^5 - 12*A*tan(1/2*d*x + 1/2*c)^3 - 4*C*tan(1/2*d*x 
 + 1/2*c)^3 + 6*A*tan(1/2*d*x + 1/2*c) + 3*B*tan(1/2*d*x + 1/2*c) + 6*C*ta 
n(1/2*d*x + 1/2*c))/(tan(1/2*d*x + 1/2*c)^2 - 1)^3)/d
 
3.1.56.9 Mupad [B] (verification not implemented)

Time = 17.10 (sec) , antiderivative size = 123, normalized size of antiderivative = 1.58 \[ \int \sec ^2(c+d x) \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right ) \, dx=\frac {B\,\mathrm {atanh}\left (\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )\right )}{d}-\frac {\left (2\,A-B+2\,C\right )\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^5+\left (-4\,A-\frac {4\,C}{3}\right )\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^3+\left (2\,A+B+2\,C\right )\,\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}{d\,\left ({\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^6-3\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^4+3\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^2-1\right )} \]

input
int((A + B/cos(c + d*x) + C/cos(c + d*x)^2)/cos(c + d*x)^2,x)
 
output
(B*atanh(tan(c/2 + (d*x)/2)))/d - (tan(c/2 + (d*x)/2)*(2*A + B + 2*C) - ta 
n(c/2 + (d*x)/2)^3*(4*A + (4*C)/3) + tan(c/2 + (d*x)/2)^5*(2*A - B + 2*C)) 
/(d*(3*tan(c/2 + (d*x)/2)^2 - 3*tan(c/2 + (d*x)/2)^4 + tan(c/2 + (d*x)/2)^ 
6 - 1))